Multiwfn -- A Multifunctional Wavefunction Analyzer
Project leader: Tian Lu (卢天)
Beijing Kein Research Center for Natural Sciences (北京科音自然科学研究中心) http://www.keinsci.com
Beijing Quanton Technology Co. Ltd. (北京量通科技有限公司)

Bug reporting, any question or recommend please contact: Sobereva@sina.com

Download link

The latest formal version is 3.3.9 (release date: 2016-Sep-18)
Software manual (with tutorials in Chapter 4): Manual_3.3.9.pdf
Excutable file for Windows: Multiwfn_3.3.9_bin_win.rar
Excutable file for Linux: Multiwfn_3.3.9_bin_linux.zip
Excutable file for Mac OS X: Multiwfn_3.3.9_bin_Mac.zip
Hint: For beginners, it is strongly suggested to use Windows version. A few functions of Linux or Mac OS X version are limited, and users may need to manually install some additional files in order to run Linux or Mac OS X version (see Section 2.1 of the manual)

Source code for Windows (including all files needed by compiling under Intel Visual Fortran 12.0.0) Multiwfn_3.3.9_src_win.rar
Source code for Linux (including all files needed by compiling under Intel Fortran compiler 12.1.0) Multiwfn_3.3.9_src_linux.zip
Source code for Mac OS X (including all files needed by compiling under Intel Fortran compiler 13.0.2) Multiwfn_3.3.9_src_Mac.zip

如果嫌下载速度慢,可以通过百度网盘下载:http://pan.baidu.com/s/1kTqiHMZ
Multiwfn使用交流与求助唯一官方论坛:计算化学公社 http://bbs.keinsci.com/forum.php?mod=forumdisplay&fid=112。Multiwfn开发者不在小木虫论坛回复Multiwfn和量子化学问题。

To download older versions, click "Downloads" tab and select corresponding version at righthand side. To download all the slideshows presented in Multiwfn workshop 2013, click "DOWNLOADS" tab and select "Multiwfn workshop 2013 slideshows". They can also be downloaded at the mirrow link: http://pan.baidu.com/share/link?shareid=759751855&uk=1074012119


Recent update history

For full update history since version 2.0.1, see UpdateHistory.txt

Version 3.3.9 (Release date: 2016-Sep-18)
NEW FUNCTIONS
  • Region of Slow Electrons (RoSE), which was proposed in Chem. Phys. Lett., 582, 144 (2013), now is supported as the 18th user defined function.
  • Subfunction 100 is added to main function 8, this new function implements the LOBA method (Phys. Chem. Chem. Phys., 11, 11297) for evaluating oxidation state based on localized MOs. See Section 3.10.7 of the manual for introduction and Section 4.8.4 for example.
  • Subfunction 20 is added to main function 100. This function is used to calculate Hellmann-Feynman force at each nucleus. See Section 3.100.20 of the manual for details.
  • Option -1 added to population analysis module for defining fragment. Once the fragment is defined, after the calculation of atomic charges, the fragment charge will be printed together.
IMPROVEMENTS AND CHANGES
  • In the output of multi-center bond order calculation, the result in normalized form is printed, this makes multi-center bond order comparable for different ring sizes. In addition, for open-shell cases, the definition of alpha and beta multi-center bond orders changed and became more meaningful by taking a ring-size dependent prefactor into account. see Section 3.11.2 of the manual for details. The definition of multi-center DI is similarly changed, see Section 3.18.10.
  • Now it is possible to compile Multiwfn without GUI supported, please check "COMPLIATION METHOD.txt" in source code package. In this case you don't need Dislin and Openmotif graphical library when running and compiling Multiwfn.
  • Windows 10 is now formally supported. In Win10, old version of Multiwfn will get stuck for about 1~2 minutes when first time enter GUI.
  • Output file of Gaussian excited state optimization task now can be directly used as input file of main function 11 for plotting electronic spectrum.
  • After performing quantitative molecular surface analysis, the density estimated according to mass and molecular volume is outputed.
  • In option 1 of topology analysis module, user now can input two atomic indices, then corresponding midpoint will be taken as starting point for locating CP. This improvement faciliates locating specific BCP.
  • min(A,B) operation is added to option 11 of main function 13, which is useful for evaluating overlap between function of two moieties. Section 4.13.7 is correpondingly added to manual to illustrate using this feature to evaluate electron density overlap region between two methanes.
  • When drawing gradient lines map by main function 4, the line width of gradient lines now can be set by option 14 in post-process menu.
  • In main function menu, users now can directly use option -11 (a hidden option) to reload a new file.
  • In option 1 of subfunction 5 of main function 100, the maximum pairing between Alpha and Beta orbitals of unrestricted wavefunction now can be shown.
  • iatmlabtype3D parameter is added to settings.ini, one can choose if atomic labels or indices will be shown in 3D map.
BUG FIXED
  • Solved crash problem when performing multi-center bond order analysis based on NBO6 output in case of presence of linear dependency of basis functions.
Notice
  • Multiwfn now can be installed on OS X EI Capitan, see https://wiki.ch.ic.ac.uk/wiki/index.php?title=Mod:multiwfn, thanks Henry Rzepa for sharing his experiences!


Version 3.3.8 (Release date: 2015-Dec-1)
NEW FUNCTIONS
  • Local DOS now can be plotted, see Section 3.12.4 for detail and Section 4.10.2 for example. LDOS can be drawn in terms of DOS curve for a point or color-filled map for a set of points in a given line.
  • Option 6 is added to CDA module, by which contribution of each fragment orbital pair to d,b,r terms of CDA can be printed, this greatly faciliates analysis of interaction between fragment orbitals.
  • Subfunction 2 of main function 100 now is able to output GAMESS-US input file with/without the SCF initial guess ($VEC) corresponding to present wavefunction. In addition, this function now is able to export .fch file based on present wavefunction, thus Multiwfn could be used as a .molden->.fch converter.
  • Option 9 is added to basin analysis module, by this function you can obtain atomic contribution to population number of ELF or other kind of basins, see Section 4.17.7 of the manual for example.
  • Energy index (EI) and bond polarity index (BPI) defined in J. Phys. Chem., 94, 5602 (1990) now can be calculated by subfunction 12 of main function 200. See Section 3.200.12 for introduction and 4.200.12 for example. BPI is a useful indicator for bond polarity, and group electronegativity can be evaluated by calculating EI for radical.
IMPROVEMENTS AND CHANGES
  • Section 4.A.6 is added to manual, it introduced how to plot odd electron density in Multiwfn.
  • When performing topology analysis for electron density in main function 2, the option 0 now clearly show the correspondence between each (3,-3) CP and nucleus.
  • Option 19 is added to main function 11, which is used to convert Raman activities to intensities, see Section 3.13.1 for discussion about the difference between activities and intensities.
  • Option 20 is added to main function 11, which is used to manually modify strength data. This option is useful if you would like to plot fluorescence spectrum, in this case you need to set oscillator strength of all transitions except for the lowest excitation to zero (Kasha's rule).
  • A new suboption (9) is added to option -1 of topology analysis module. By making use of this option, during the critical point (CP) searching, only the CP with value within user-defined range will be reserved, and thus unnecessary CPs could be ignored.
  • Subfunction 10 of main function 200 now can be directly used to calculate various kinds of integral for two specific orbitals.
  • Subfunction 5 of main function 100 is extended, now the overlap between alpha orbitals and the counterpart beta orbitals are allowed to be directly obtained (i.e. the off-diagonal terms will not be evaluated to significantly reduce cost).
  • Option 5 in subfunction 1 of main function 18 now is also able to decompose both transition electric and magnetic dipole moments to basis function and atom contributions.
  • In fragment definition interface of DOS plotting and orbital composition analysis modules, when using "cond" method to add wanted basis functions, the P,D,F,G,H shells can be directly selected.
  • |V(r)|/G(r) is added as the 35th user defined function. In J. Chem. Phys., 117, 5529 (2002) it was proposed that this quantity at BCP can be used to discriminate interaction types.
BUG FIXED
  • The quality of relief map for some real space functions is improved.
  • Fixed a small bug in loading .xyz file.
  • Fixed a small bug in locating settings.ini file via Multiwfnpath environment variable.
  • Expired links containing "hi.baidu.com" in old version of manual have been updated.
  • ICSS module (Subfunction 4 of main function 200) now works for G09 D.01. The older version crashes because G09 D.01 changed output format of NMR task.


Introduction

Multiwfn is an extremely powerful wavefunction analysis program, supports almost all of the most important wavefunction analysis methods. Multiwfn is free, open-source, high-efficient, very user-friendly and flexible. Windows (32/64bit XP/Vista/7/8/10), 64bit Linux and Mac OS X platforms are supported. All versions can be downloaded at Multiwfn official website http://Multiwfn.codeplex.com. Multiwfn accepts several kinds of files for inputting wavefunction information: .wfn/.wfx (Conventional / Extended PROAIM wavefunction file), .molden (Molden input file), .31~.40 (NBO plot file), .fch (Gaussian formatted check file). Other file types such as Gaussian .cub file, DMol3 .grd file, .pdb, .xyz file and plain text file are acceptable for specific functions.
  • Special points of Multiwfn
    • (1) Comprehensive functions. Almost all of the most important wavefunction analysis methods (except for NBO methods) are supported by Multiwfn.
    • (2) Very user-friendly. Multiwfn is designed as an interactive program, prompts shown in each step clearly instructs users what should do next, Multiwfn also never print obscure messages, hence there is no any barrier even for beginners. Besides, there are more than 70 tutorials in the manual, which would be very helpful for new users.
    • (3) High efficiency. The code of Multiwfn is substantially optimized. Most parts are parallelized by OpenMP technology. For time-consuming tasks, the efficiency of Multiwfn exceeds analogous programs significantly. Meanwhile, the memory requirement is very low.
    • (4) Results can be visualized directly. A high-level graphical library DISLIN is invoked internally and automatically by Multiwfn for visualizing results, most of plotting parameters are controllable in an interactive interface. Thus the procedure of wavefunction analysis is remarkably simplified, especially for studying distribution of real space functions.
  • Main functions of Multiwfn
    • 1) Showing molecular structure and viewing orbitals (MO, NBO, natural orbital, etc.).
    • 2) Outputting all supported real space functions at a point.
    • 3) Outputting real space function in a line and plot it as curve map.
    • 4) Outputting real space function in a plane and plot it as graph. Supported graph types include filled-color map, contour map, relief map (with/without projection), gradient map, vector field map.
    • 5) Outputting real space function in a spatial scope, data can be exported to Gaussian-type grid file (.cub) and can be visualized as isosurface.
    • 6) For the calculation of real space functions in one-, two- and three-dimensions, user can define the operations between the data generated from multiple wavefunction files. Therefore one can calculate and plot such as Fukui function, dual descriptor and density difference very easily. Meanwhile promolecule and deformation properties for all real space functions can be calculated directly.
    • 7) Topology analysis for electron density (AIM analysis), Laplacian, ELF/LOL etc. Critical points and gradient paths can be searched and visualized in terms of 3D or plane graph. Interbasin surfaces can be drawn. Values of real space functions can be calculated at critical points or along topology paths.
    • 8) Checking and modifying wavefunction. For example print orbital and basis function information, manually set orbital occupation number and type, translate and duplicate system, discard wavefunction information from specified atoms.
    • 9) Population analysis. Hirshfeld, VDD, Mulliken, Löwdin, Modified MPA (including three methods: SCPA, Stout & Politzer, Bickelhaupt), Becke, ADCH (Atomic dipole moment corrected Hirshfeld), CHELPG, Merz-Kollmann and AIM methods are supported.
    • 10) Orbital composition analysis. Mulliken, Stout & Politzer, SCPA, Hirshfeld, Becke and natural atomic orbital (NAO) methods are supported to obtain orbital composition.
    • 11) Bond order analysis. Mayer bond order, multi-center bond order (up to 12-centers), Wiberg bond order in Löwdin orthogonalized basis and Mulliken bond order are supported. Mayer and Mulliken bond order can be decomposed to orbital contributions.
    • 12) Plotting Total/Partial/Overlap population density-of-states (TDOS, PDOS, OPDOS), up to 10 fragments can be very flexibly and conveniently defined. Local DOS (LDOS) can also be plotted for a point as curve map or for a line as color-filled map.
    • 13) Plotting IR/Raman/UV-Vis/ECD/VCD spectrum. Abundant parameters (broadening function, FWHM, etc.) can be determined by users, individual contribution from each transition to the spectrum can be studied.
    • 14) Quantitative analysis of molecular surface. Surface properties such as surface area, enclosed volume, average value and std. of mapped functions can be computed for the whole molecular surface or for local surface; local minima and maxima of mapped functions on the surface can be located. Becke and Hirshfeld surface analysis are also supported.
    • 15) Processing grid data (can be loaded from .cub/.grd or generated by Multiwfn). User can perform mathematical operations on grid data, set value in certain range, extract data in specified plane, plot integral curve, etc.
    • 16) Adaptive natural density partitioning (AdNDP) analysis. The interface is interactive and the AdNDP orbitals can be visualized directly.
    • 17) Analyzing real space functions in fuzzy atomic spaces (defined by Becke or Hirshfeld). Integral of selected real space function in atomic spaces or in overlap regions of atomic spaces, atomic multipole moments, atomic overlap matrix (AOM), localization and delocalization index (DI), condensed linear response kernel, multi-center DI, as well as four aromaticity indices, namely FLU, FLU-pi, PDI and PLR can be computed.
    • 18) Charge decomposition analysis (CDA) and extended CDA analysis. Orbital interaction diagram can be plotted. Infinite number of fragments can be defined.
    • 19) Basin analysis. Attractors can be located for any real space function, corresponding basins can be generated and visualized at the same time. Any real space function can be integrated in the generated basins. Electric multipole moments, orbital overlap matrix, localization index and delocalization index can be calculated for the basins. Atomic contribution to basin population can be obtained.
    • 20) Electron excitation analysis, including: Visualizing and analyzing hole-electron distribution, transition density, transition electric/magnetic dipole moment and charge density difference; analyzing charge-transfer by the method proposed in JCTC,7,2498; plotting transition density matrix as color-filled map; calculating delta_r index to reveal electron excitation mode; calculating transition dipole moments between all excited states.
    • 21) Other useful functions or utilities involved in quantum chemistry studies: Weak interaction analysis via RDG method (including fluctuation environment analysis); plotting scatter map for two functions in specific spatial scope; integrating a real space function over the whole space by Becke's multi-center method; evaluating overlap integral between alpha and beta orbitals; evaluating overlap between norm of two orbitals; monitoring SCF convergence process; generating Gaussian input file with initial guess from converged wavefunction or multiple fragment wavefunctions; calculating van der Waals volume; calculating HOMA and Bird aromaticity indices; calculating LOLIPOP index; calculating intermolecular orbital overlap; Yoshizawa's electron transport route analysis; calculating atomic and bond dipole moment in Hilbert space; plotting radial distribution function for real space functions; plotting iso-chemical shielding surface (ICSS); calculating overlap integral between orbitals in two different wavefunctions; parsing output of (hyper)polarizability task of Gaussian; calculating polarizability and 1st/2nd/3rd hyperpolarizability by sum-over-states (SOS) method; outputting various kinds of integrals between orbitals; calculating center; the first and second moments and radius of gyration for a real space function; exporting wavefunction to .molden, .fch and GAMESS-US input file with $VEC; calculating bond polarity index (BPI); evaluating oxidation state and so on.
  • The real space functions supported by Multiwfn
    • 1 Electron density
    • 2 Gradient norm of electron density
    • 3 Laplacian of electron density
    • 4 Value of orbital wavefunction
    • 5 Electron spin density
    • 6 Hamiltonian kinetic K(r)
    • 7 Lagrangian kinetic G(r)
    • 8 Electrostatic potential from nuclear / atomic charges
    • 9 Electron localization function (ELF) defined by Becke and the one defined by Tsirelson
    • 10 Localized orbital locator (LOL) defined by Becke and the one defined by Tsirelson
    • 11 Local information entropy
    • 12 Total electrostatic potential (ESP)
    • 13 Reduced density gradient (RDG)
    • 14 Reduced density gradient with promolecular approximation
    • 15 Sign(lambda2)*rho (The product of the sign of the second largest eigenvalue of electron density Hessian matrix and electron density)
    • 16 Sign(lambda2)*rho with promolecular approximation
    • 17 Exchange-correlation density, correlation hole and correlation factor
    • 18 Average local ionization energy
    • 19 Source function
    • 20 Many other useful functions, such as potential energy density, electron energy density, shape function, local temperature, linear response kernel, local electron affinity, numerous DFT exchange-correlation potential, Fisher information entropy, steric energy/potential/charge, PAEM and so on.
Multiwfn also provides a custom function, the code can be easily filled by users to further extend the capacity of Multiwfn.

Citing & Donating Multiwfn

The one of the best ways to support us to further develope and maintain Multiwfn is to cite related papers
  • Original paper of Multiwfn, must be cited if Multiwfn is used: Tian Lu, Feiwu Chen, J. Comp. Chem. 33, 580-592 (2012)
  • If quantitative molecular surface analysis module of Multiwfn is involved in your work, citing this paper is also requested: J. Mol. Graph. Model., 38, 314-323 (2012)
  • If orbital composition analysis module of Multiwfn is involved, citing this paper is recommended but never compulsory: Tian Lu, Feiwu Chen, Calculation of Molecular Orbital Composition, Acta Chim. Sinica, 69, 2393-2406 (2011) (in Chinese)
  • If CDA module of Multiwfn is involved, citing below paper is recommended, in which the generalized CDA method that implemented in Multiwfn is introduced: Meng Xiao, Tian Lu, Generalized Charge Decomposition Analysis (GCDA) Method, J. Adv. Phys. Chem., 4, 111-124 (2015) (in Chinese) http://dx.doi.org/10.12677/JAPC.2015.44013

Another way to support Multiwfn is making financial donation, there are three ways:
  • paypal_logo.png Transfer via Paypal, account: sobereva@sina.com
  • Transfer to the developer account at BANK OF CHINA (中国银行), name: Tian Lu (卢天), serial no.: 6216610100002728380
  • Transfer via ZhiFuBao (支付宝), account: sobereva@sina.com
Please then inform your transfer information to us by sending an E-mail to sobereva@sina.com, then your name will appear on the contributor list. Any amount of donation is accepted and will be greatly appreciated by the developer!

Although Multiwfn does not have any financial support from academic organizations or goverment, Multiwfn will be free-of-charge and open-source forever for academic users!


Related resources and posts

Multiwfn_logo.png 362KB, high resolution logo of Multiwfn (1306*1228)
Multiwfn_poster.jpg 715KB, presented at the 28th CCS congress (2012, Apr, 13-16)
art_card1.jpg art_card2.jpg art_card3.jpg. Art work of Multiwfn.

"The significance, functions and uses of multifunctional wavefunction analysis program Multiwfn" (in Chinese) http://sobereva.com/184

"Tips for getting start with Multiwfn" (in Chinese) http://sobereva.com/167

Slideshow "An introduction to Multiwfn 3.0" (111p): An introduction to Multiwfn 3.0.ppt

Slideshow "A brief introduction to Multiwfn and wavefunction analysis" (261p, in Chinese, used in the talk at Hunan Normal University on 2014-Jun-19): brief_intro.part1.rar brief_intro.part2.rar

Slideshow ”Predicting reactive sites" (50p) Predicting reactive sites_EN.pdf

Tutorial Drawing ELF isosurfaces with different colors for different domains.pdf (in English), in which I showed how to use Chimera in combination with Multiwfn to plot ELF isosurfaces with different colors for different domains. The graph obtained in this manner is ideal for publication purpose.

Tutorial "Studying the variation of electronic structure along the IRC path of DA adduction" (in English), in which I showed how to plot Mayer bond order curve and make animation of ELF isosurface to illustrate the variation of electronic structure in Diels-Alter reaction. The pdf file of this tutorial and related files can be download here: IRCtutorial.rar

Tutorial "Plotting electrostatic potential colored molecular surface map with ESP surface extrema via Multiwfn and VMD" plotESPsurf.pdf

"An overview of the weak interaction analysis methods supported by Multiwfn" (in Chinese. Section 4.A.5 of the manual in fact is the condensed version of this post) http://sobereva.com/252

"Using Multiwfn to predict crystal density, heat of vaporization, boiling point and solvation free energy" (in Chinese) http://sobereva.com/337

"Using Multiwfn to calculate (hyper)polarizability density" (in Chinese) http://sobereva.com/305

"Using Multiwfn to visualize molecular orbitals" (in Chinese) http://sobereva.com/269

"Calculating dipole moment of each orbital" (in Chinese) http://sobereva.com/251

"Using Multiwfn to calculate polarizability and hyperpolarizability based on sum-over-states method" (in Chinese) http://sobereva.com/232

"Using Multiwfn to analyze the polarizability and hyperpolarizability outputted by Gaussian09" (in Chinese) http://sobereva.com/231

"Using Multiwfn to plot IR, Raman, UV-Vis, ECD and VCD spectra" (in Chinese) http://sobereva.com/224

"Utilizing Multiwfn to calculate transition dipole moment between the excited states outputted by Gaussian" (in Chinese) http://sobereva.com/227

"Using Multiwfn to study aromaticity by drawing iso-chemical shielding surfaces" (in Chinese) http://sobereva.com/176

"Drawing AIM topological analysis diagram by combinely using Multiwfn and VMD" (in Chinese) http://sobereva.com/207

"Studying chemical reaction process via curve map of bond order and anime of ELF/LOL/RDG isosurface" (in Chinese)
http://sobereva.com/200

"Using Multiwfn and VMD to analyze and plot electrostatic potential on molecular surface" (in Chinese) http://sobereva.com/196

"Using Multiwfn to study weak interaction in molecular dynamics" (in Chinese) http://sobereva.com/186

"Using Multiwfn to perform basin analysis for electron density, ELF, electrostatic potential, density difference and other functions" (in Chinese) http://sobereva.com/179

"The methods for measuring aromaticity and their calculations in Multiwfn" (in Chinese) http://sobereva.com/176

"Using Multiwfn to perform charge decomposition analysis (CDA) and plotting orbital interaction diagram" (in Chinese) detailedly introduced the theory and usage of CDA module of Multiwfn http://sobereva.com/166

"Display and calculation of intermolecular orbital overlap" (in Chinese) proposed a novel approach to visualize intermolecular orbital overlap, and described how to use Multiwfn to calculate the overlap integral. http://sobereva.com/163

"Using quantitative molecular surface analysis function of Multiwfn to predict reactive site and analyze intermolecular interaction" (in Chinese) http://sobereva.com/159

"Using Multiwfn to draw atomic orbitals, study atomic shell structures and the influence of relativistic effects" (in Chinese) http://sobereva.com/152

"Study multi-center bonds by AdNDP approach as well as ELF/LOL and multi-center bond order" (in Chinese) detailedly introduced the usage of AdNDP module in Multiwfn by practical example, meanwhile similarities and differences between AdNDP, ELF/LOL and multi-center bond order methods are compared. http://sobereva.com/138

"Plotting transition density matrix graph to analyze electronic transition" (in Chinese) http://sobereva.com/136

"On the calculation methods of orbital composition" (in Chinese) deeply discussed pros and cons of various calculation methods of orbital composition, the usage of orbital composition analysis module of Multiwfn are described in detail.
http://sobereva.com/131

"Using Multiwfn to plot NBO and related orbitals" (in Chinese) http://sobereva.com/134

"Using Multiwfn to plot difference map for electron density" (in Chinese) http://sobereva.com/113

"Using Multiwfn to perform topology analysis and calculate angle of lone pairs" (in Chinese) http://sobereva.com/108

"Visual research of weak interaction by Multiwfn" (in Chinese) detailed the analysis method of weak interaction by using reduced density gradient (RDG) and sign(lambda2)*rho function, a lot of instances were given. http://sobereva.com/68

"Visual research of electron localization" (in Chinese) graphically introduced ELF, LOL and laplacian function by using Multiwfn.
http://sobereva.com/63

"Making anime to analyze electron structure characteristic" (in Chinese) introduced how to create anime by using Multiwfn and shell script.
http://sobereva.com/86


By using molden2aim program written by W. Zou, Molden input files can be converted to .wfn format, which is best supported by Multiwfn. For detail please visit http://people.smu.edu/wzou/program/index.html and consult Section 5.1 of Multiwfn manual.

The VMwfn written by Cheng Zhong is an utility for Multiwfn, which is able to conveniently generate a batch of cube files and render them as isosurface maps by means of VMD and POVRAY. For detail please visit http://emuch.net/bbs/viewthread.php?tid=7308796&fpage=1


Examples

Unless otherwise specified, the graphs below are generated by Multiwfn directly, any other external programs are not required, only the file containing wavefunction information is needed as input. Note that these examples only involve a very small part of functions of Multiwfn!
 

The 0.08 isosurface of two natural bond orbitals (NBO) of NH2COH, the first one is lone pair of nitrogen, the second one is anti-bonding orbital between carbon and oxygen. The secondary perturbation energy due to their interaction reached about 60kcal/mol.

NH2COH_NBO_2_56_window.png


Contour map of the two NBOs shown above, the drawing plane is perpendicular to molecular plane and passed through both carbon and nitrogen atoms.

NH2COH_NBO_2_56_contour_map.png


Critical points and bond paths of electron density of imidazole - magnesium porphyrin complex. Some of interbasin surfaces are shown by yellow surfaces.

MN-NN_topology.PNG


(3, -3) and (3,-1) critical points and corresponding topology path of ELF of pyrazine. The purple spheres beside nitrogen atoms reveal the position of lone pairs, while the purple spheres between each two atoms shows that electrons are highly localized in the covalent bond regions.

pyrazine_ELF_topology.jpg


Spin density in the line defined by carbon and oxygen nuclei of triplet state methanamide.

formamide-m3-curve.PNG


Localized orbital locator (LOL) map of a small part of graphene, isovalue of the contour line is 0.5. The wavefunction of graphene primitive cell is calculated by PBC function of Gaussian, then Multiwfn is used to extend the wavefunction to periodic plane.

Graphene-LOL-3-21g.jpg


Contour map of electrostatic potential of ClF3 in molecular plane, crimson and black lines correspond to positive and negative part respectively. The bold blue line shows the van der Waals surface (electron density=0.001, which is defined by Bader)

ClF3_ESP_b3lyp-cc-pVTZ.png


Gradient vector field with contour lines of electron density of uracil in molecular plane

Uracil_del-rho_field.PNG


Filled color relief map with projection map of ELF (Electron localization function) of Li6 cluster

Li6-YZ-ELF.jpg


The 0.5 isosurface of reduced density gradient (RDG) of urea crystal. This picture vividly reveals region and type of all weak interactions (green=vdW interaction, blue=H-bond, brown=weak steric effect). Plotted by VMD based on the data generated by Multiwfn.

Urea_RDG.jpg


Gradient map of electron density with contour lines of magnesium porphyrin. Brown, blue, and orange circles denote (3,-3), (3,-1) and (3,+1) critical points respectively, deep brown lines depict bond paths, deep blue lines reveals interbasin path.

MN-rho-gradient-paths.PNG


Deformation electron density map of magnesium porphyrin, the solid lines represent the region in which electron density increased during chemical bond formation, the dash lines represent the region that density decreased.

MN-defdens.gif


Total / Partial / Overlap density-of-state (DOS) map of ferrocene. For clarity, isosurfaces of corresponding molecular orbitals were appended on the graph by external tools.

ferrocene-DOS.gif


Minima (blue spheres) and maxima (red spheres) of average local ionization energy on van der Waals surface of phenol. The location of minima above and below the conjugated ring perfectly explained the effect of hydroxyl as a ortho-para directing group. Minimum 8 (at back) and 9 correspond to the easily polarized lone pair of oxygen.

avglocion_phenol.gif


ESP distribution on van der Waals surface of benzoapyrene diol epoxide (see Struct. Chem., 25, 1521 (2014) for more details). The positions and values of surface minima and maxima of ESP are shown on the graph. This graph was plotted by VMD based on the output of quantitative molecular surface analysis module of Multiwfn. If you would like to plot a similar graph, please consult plotESPsurf.pdf

BaeP.jpg


Deformation density map during pushing two hydrogens with like-spin electron together (please refresh the page if the anime cannot be properly played). To draw the anime, generate wavefunction files of each step first, then write a script to invoke Multiwfn to process them and output corresponding graphs, finally use ImageMagick to combine graphs to gif anime file.

H2trilong_all.gif


Two of three 5-center orbitals of B13+ cluster produced by adaptive natural density partitioning (AdNDP) approach.

B13+two5c.gif


Orbital interaction diagram of COBH3. CO and BH3 are chosen as fragment 1 and 2, respectively. Solid and dashed bars correspond to occupied and unoccupied orbitals, respecitvely. If contribution of a fragment orbital to a complex orbital is >=5% then corresponding two bars are linked, and the contribution value is labelled by red texts. Orbital indices are labelled by blue texts.

COBH3_orbintdiagram.png


The ELF basin corresponding to the nitrogen lone pair in adenine. Light green spheres denote ELF attractors, the labels are attractor indices. By Multiwfn, integral of real space space functions in the basins can be obtained, electric multipole moments and localization/delocalization index can be calculated for the basins.

adenine_ELFbasin.png


UV-Vis spectrum plotted by Multiwfn+Origin. The total spectrum is decomposed into contributions from different transitions. This feature makes the analysis of the nature of the absorption peaks much easier.

Acetic_acid_UV-Vis.png


TODO list

Support Atomic-Orbital-Symmetry Based sigma, pi and delta Decomposition Analysis of Bond Orders
Support calculating charge transfer integral (Version 3.4)
Support ADF, Crystal09, and the first-principle programs using plane-wave basis-set
Improve the speed of ESP calculation
Support the topology analysis that purely based on grid data (using tricubic interpolation)

Acknowledgement

The author thanks following users (in no particular order), who provided valuable suggestions or reported bugs, users' feedbacks are very important for the development of Multiwfn.
Henry Rzepa; Théo Piechota Gonçalves; lip; Tsuyuki Masafumi; + - * /; Jingsi Cao; Jean-Pierre Dognon; Shubin Liu; Shuchang Luo; Xunlei Ding; Daniele Tomerini; Sergei Ivanov; Cheng Zhong; Can Xu; GuangYao Zhou; HaiBin Li; jsbach; Beefly; Emilio Jose Juarez-Perez; YangChunBaiXue; XinYing Li; Yang Yang; Andy Kerridge; junjian; JinYun Wang; Zhuo Yang; LiYan Wang; DongTianLiDeJiaoYang; FangFang Zhou; YingHui Zhang; ShuChang Luo; YuYang Zhu; Arne Wagner; Dongdong Qi

The following donators are greatfully acknowledged (in no particular order):
Yi Mu (穆毅), Fugui Xiao (肖富贵), Qing Song (宋青), Yifan Yang; Changli Cheng; Min Xia; Hanwen Cao

Specially thanks to my wives Mio Akiyama(秋山澪) and Azusa Nakano(中野梓) in nijigen world and Qinxue Chen in real world!

The papers used or cited Multiwfn

The papers are sorted according to publication date, the first 1300 are listed in pub_1-1300.txt

1301 Fuxing Kang, Qian Wang, Weijun Shou, et al., Alkali–earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis, Environ. Pollut. (2016) http://www.sciencedirect.com/science/article/pii/S0269749116312593

1302 Ji-Chuang Hu, Lin-Lin Xu, Xiao-Yu Hou, et al., On the Origin of the Different Reactivity of the Triatomic Anions HMoN‒ and ZrNH‒ toward Alkane - Compositions of the Active Orbitals, J. Phys. Chem. A (2016) http://pubs.acs.org/doi/10.1021/acs.jpca.6b08303

1303 Jiao Gao, Nathan A. Seifert, Javix Thomas, et al., Structure and internal rotation dynamics of the acetone-neon complex studied by microwave spectroscopy, J. Mol. Struct. (2016) http://www.sciencedirect.com/science/article/pii/S0022285216302132

1304 Daobin Zhang, Congbin Fan, Chunhong Zheng, Shouzhi Pu, A new dithienylethene dimer with terminal tertiary amine redox centers: Electrochemical, UV-vis-NIR spectral and electronic transfer charges induced by a stepwise photochromic process, Dyes. Pig. (2016) http://www.sciencedirect.com/science/article/pii/S0143720816307185

1305 Prakash L. Verma, Libero J. Bartolotti, Shridhar P. Gejji, Probing Molecular Interactions in Functionalized Asymmetric Quaternary Ammonium Based Dicationic Ionic Liquids, J. Phys. Chem. A (2016) http://pubs.acs.org/doi/10.1021/acs.jpca.6b07337

1306 MANAS GHARA, SUDIP PAN, JYOTIRMOY DEB, et al., A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au), J. Chem. Sci. (2016) http://link.springer.com/article/10.1007/s12039-016-1150-9

1307 Dao-Bin Zhang, Jin-Yun Wang, Denis Jacquemin, Zhong-Ning Chen, Spectroscopic and Electrochemical Properties of Ruthenium Complexes with Photochromic Triarylamine-Dithienylethene-Acetylide Ligands, Inorg. Chem. Front. (2016) http://pubs.rsc.org/en/content/articlelanding/2016/qi/c6qi00175k/

1308 Chengxi Zhao, Yunxiang Lu, Guimin Wang, Weiliang Zhu, Cation-anion radical interactions between halopyridinium cations and metal dithiolene complexes M(C2S2)2CN−•: A theoretical study of halogen bonds in conducting or magnetic molecular materials, Int. J. Quantum Chem. (2016) http://onlinelibrary.wiley.com/doi/10.1002/qua.25293/full

1309 Aniruddha Ganguly, Bijan K. Paul, Soumen Ghosh, Nikhil Guchhait, Methanol-mediated excited-state double proton transfer in 1H-pyrrolo3,2-hquinoline: Concerted or Sequential Mechanism? Comput. Theor. Chem., 1095, 65 (2016) http://www.sciencedirect.com/science/article/pii/S2210271X16303619

1310 Chokkapu Eswara Rao, Subrat Kumar Barik, K. Yuvaraj, et al,. Reactivity of CS2 – Syntheses and Structures of Transition-Metal Species with Dithioformate and Methanedithiolate Ligands, Eur. J. Inorg. Chem. (2016) http://onlinelibrary.wiley.com/doi/10.1002/ejic.201600823/pdf

1311 Abolfazl Azizi, Ali Ebrahimi, The X−···benzohydrazide complexes: the interplay between anion-π and H-bond interactions, Struct. Chem. (2016) http://link.springer.com/article/10.1007/s11224-016-0839-1

1312 Hossein Sabet-Sarvestani, Hossein Eshghi, Mohammad Izadyar, A theoretical study on the efficiency and role of guanidines-based organic superbases on carbon dioxide utilization in quinazoline-2,4(1H, 3H)-diones synthesis, Struct. Chem. (2016) http://link.springer.com/article/10.1007/s11224-016-0842-6

1313 Murugan Lalitha, Shivaraja Selva Mahadevan, Senthilkumar Lakshmipathi, Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives, J. Mater. Sci. (2016) http://link.springer.com/article/10.1007/s10853-016-0378-6

1314 M. Di Paolo, M. L. Bossi, R. Baggio and S. A. Suarez, Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study, Acta Cryst., B72 (2016) http://scripts.iucr.org/cgi-bin/paper?eb5049

1315 S. A. Suarez, F. Muller, M. E. Gutiérrez Suburu, A. Fonrouge, R. F. Baggio and F. D. Cukiernik, Br...Br and van der Waals interactions along a homologous series: crystal packing of 1,2-dibromo-4,5-dialkoxybenzenes, Acta Cryst., B72 (2016) http://scripts.iucr.org/cgi-bin/paper?lo5009

1316 A. N. Isaev, O–H···C hydrogen bond in the methane–water complex, Russ. J. Phys. Chem. A, 90, 1978 (2016) http://link.springer.com/article/10.1134/S0036024416100150

1317 T. Karthick, Poonam Tandon, Swapnil Singh, et al., Characterization and intramolecular bonding patterns of busulfan: Experimental and quantum chemical approach, Spectrochim. Acta A (2016) http://www.sciencedirect.com/science/article/pii/S1386142516305492

1318 Wenjuan Wang, Xiehuang Sheng, Shaolong Zhang, et al., Theoretical Characterization of the Conformational Feature for Unnatural Oligonucleotide Containing a Six Nucleotide Genetic Alphabet, Phys. Chem. Chem. Phys. (2016) http://pubs.rsc.org/is/content/articlehtml/2016/cp/c6cp05594j

1319 Wei-Lu Ding, Xing-Liang Peng, Ze-Sheng Li, Influence of oligothiophene-functionalized co-sensitizer on the electron injection efficiency for multiple dye-TiO2 interface, Org. Electron., 38, 384 (2016) http://www.sciencedirect.com/science/article/pii/S1566119916303950

1320 Maria Maria, Javed Iqbal, Khurshid Ayub, Theoretical Study on Non Linear Optical Properties of Alkali Metal (Li, Na, K) Doped Aluminum Nitride Nano-cages, RSC Adv. (2016) http://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra21797d

1321 Yongxing Tang, Haixiang Gao, Gregory H. Imler, Energetic dinitromethyl group functionalized azofurazan and its azofurazanates, RSC Adv. (2016) http://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra22007j

1322 Ming Li, Hui Zhang, Yan Zhang, et al., Facile synthesis of benzothiadiazole-based chromophores for enhanced performance of second-order nonlinear optical materials, J. Mater. Chem. C (2016) http://pubs.rsc.org/en/content/articlehtml/2016/tc/c6tc02964g

1323 Abolfazl Shiroudi, Ehsan Zahedi, Understanding the kinetics of thermal decomposition of 2,3-epoxy-2,3-dimethylbutane using RRKM theory, RSC Adv. (2016) http://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra21963b

1324 Fengying Zhang, Pei Yu, Wei Shen, Ming Li, Rongxing He, Comparison of p-type sensitizers with different electron-induced effects in dye-sensitized solar cells: A theoretical investigation, Comput. Theor. Chem., 1095, 118 (2016) http://www.sciencedirect.com/science/article/pii/S2210271X16303723

1325 Yujie Dai, Tongcun Zhang, Piao Yingai, et al., Computational study on fused five membered heterocyclic compounds containing tertiary oxygen, J. Mol. Struct. (2016) http://www.sciencedirect.com/science/article/pii/S0022286016309966

1326 Mannix P. Balanay, Kyu-Seok Choi, Sang Hee Lee, Experimental and theoretical analysis of organic dyes having a double D-π-A configurations for dye-sensitized solar cells, Spectrochim. Acta A (2016) http://www.sciencedirect.com/science/article/pii/S1386142516305388

1327 Jie Zhao, Bing Xu, Wenjie Yu, Xuefeng Wang, Silicon Tetrahydroborate and Silylene Dihydroborate with Interelement B–H–Si and B═Si Bonds, Organometallics (2016) http://pubs.acs.org/doi/full/10.1021/acs.organomet.6b00368

1328 Caibin Zhao, Hongguang Ge, Lingxia Jin, et al., Theoretical investigation on exciton-dissociation and charge-recombination processes of PC61BM-PTDPPSe interface, J. Mol. Model., 22, 241 (2016) http://link.springer.com/article/10.1007/s00894-016-3117-7

1329 Sudip Pan, Manas Ghara, Sreyan Ghosh, Pratim K. Chattaraj, Noble Gas Bound Beryllium Chromate and Beryllium Hydrogen Phosphate: A Comparison with Noble Gas Bound Beryllium Oxide, RSC Adv. (2016) http://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra20232b

1330 Jin Chen, Teng Teng, Liju Kang, Highly Efficient Thermally Activated Delayed Fluorescence in Dinuclear Ag(I) Complexes with a Bis-Bidentate Tetraphosphane Bridging Ligand, Inorg. Chem. (2016) http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.6b00068

1331 Yin-Yin Sun, Jin-Feng Li, Fu-Qiang Zhou, et al., Probing the potential of halogen-free superhalogen anions forming effective electrolyte of Li-ion battery. A theoretical prospect from combined ab initio and DFT study, Chem. Phys. Phys. Chem. (2016) http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp05871j

1332 Enxian Yuan, Li Wang, Xiangwen Zhang, et al., Density Functional Theory Analysis of Anthraquinone Derivative Hydrogenation over Palladium Catalyst, ChemPhysChem (2016) http://onlinelibrary.wiley.com/doi/10.1002/cphc.201600874/full

1333 Aymard Didier Tamafo Fouegue, Ghogomu Julius Numbonui, Désiré Bikélé Mama, et al., Structural and Antioxidant Properties of Compounds obtained from Fe2+ Chelation by Juglone and Two of its Derivatives: DFT, QTAIM and NBO Studies, Bioinorg. Chem. Appl. (2016) https://www.hindawi.com/journals/bca/aip/8636409/

Last edited Today at 6:48 AM by sobereva, version 1458